

Reconstruction of Light Spectra from Multispectral Images

Frank Sippel Chair of Multimedia Communications and Signal Processing

Motivation

Shaw et al. "Hyperspectral imaging and quantitative analysis for prostate cancer detection"

Motivation

Williams et al. "Classification of maize kernels using NIR hyperspectral imaging"

Problem Statement

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÖRNBERG TECHNISCHE FAKULTÄT Sippel: Reconstruction of Light Spectra from Multispectral Images Chair of Multimedia Communications and Signal Processing July 21, 2021 Page 2

Pipeline

Pipeline

Pipeline

Sippel: Reconstruction of Light Spectra from Multispectral Images Chair of Multimedia Communications and Signal Processing July 21, 2021 Page 3 • Reconstructable spectrum: $s(\lambda) = q(\lambda)r(\lambda) o(\lambda)m(\lambda)$

- ► Reconstructable spectrum: $s(\lambda) = q(\lambda)r(\lambda) o(\lambda)m(\lambda)$
- ▶ Substituted equation: $\mathbf{c}_i = \int_{\lambda_{\min}}^{\lambda_{\max}} \mathbf{f}_i(\lambda) s(\lambda) \, d\lambda \rightarrow \text{Inverting integration cumbersome}$

► Reconstructable spectrum: $s(\lambda) = q(\lambda)r(\lambda) o(\lambda)m(\lambda)$

- ▶ Substituted equation: $\mathbf{c}_i = \int_{\lambda_{\min}}^{\lambda_{\max}} \mathbf{f}_i(\lambda) s(\lambda) \, d\lambda \rightarrow \text{Inverting integration cumbersome}$
- ▶ Discretization: c_i = ∑_{j=1}^N F_{ij}s_j or c = Fs
 ▶ c ∈ R^M : Multispectral channels for one pixel
 ▶ F ∈ R^{M×N} : Sampled filter as matrix
 ▶ s ∈ R^N : Sampled spectrum for one pixel

► Reconstructable spectrum: $s(\lambda) = q(\lambda)r(\lambda) o(\lambda)m(\lambda)$

- ▶ Substituted equation: $\mathbf{c}_i = \int_{\lambda_{\min}}^{\lambda_{\max}} \mathbf{f}_i(\lambda) s(\lambda) \, d\lambda \rightarrow \text{Inverting integration cumbersome}$
- ▶ Discretization: c_i = ∑_{j=1}^N F_{ij}s_j or c = Fs
 ▶ c ∈ R^M : Multispectral channels for one pixel
 ▶ F ∈ R^{M×N} : Sampled filter as matrix
 ▶ s ∈ R^N : Sampled spectrum for one pixel

Underdetermined System

- \blacktriangleright Typically: $M << N \rightarrow$ Underdetermined linear system of equations
- Prior knowledge must be embedded

Spectra Statistics

Sippel: Reconstruction of Light Spectra from Multispectral Images

July 21, 2021 Page 5

Chair of Multimedia Communications and Signal Processing

Smoothed Pseudoinverse

Optimization problem:

$$\mathbf{\hat{s}^{SP}} = \underset{\mathbf{s}}{\operatorname{argmin}} ||\mathbf{Ds}||_2^2$$

s.t. $\mathbf{c} = \mathbf{Fs}$

Pratt et al. "Spectral estimation techniques for the spectral calibration of a color image scanner"

Smoothed Pseudoinverse

Optimization problem:

$$\mathbf{\hat{s}^{SP}} = \underset{\mathbf{s}}{\operatorname{argmin}} ||\mathbf{Ds}||_2^2$$

s.t. $\mathbf{c} = \mathbf{Fs}$

First-order difference matrix:

$$\mathbf{D}_{1} = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -1 \end{pmatrix}$$

Pratt et al. "Spectral estimation techniques for the spectral calibration of a color image scanner"

Smoothed Pseudoinverse

Pratt et al. "Spectral estimation techniques for the spectral calibration of a color image scanner"

Image noise often generated by low exposure time, e.g., video

FRIEDRICH-ALEXANDER UNIVERSITÄT TECHNISCHE FAKULTÄT

- Image noise often generated by low exposure time, e.g., video
- ► Most important noise sources:
 - Content-dependent shot noise (Poisson)
 - Dark current noise (Gaussian)
 - Amplifier noise (Gaussian)
 - Reset noise (Gaussian)

July 21, 2021

Page

- Image noise often generated by low exposure time, e.g., video
- ► Most important noise sources:
 - Content-dependent shot noise (Poisson)
 - Dark current noise (Gaussian)
 - Amplifier noise (Gaussian)
 - Reset noise (Gaussian)
- Poisson noise cumbersome to model

k

20

Sippel: Reconstruction of Light Spectra from Multispectral Images Chair of Multimedia Communications and Signal Processing July 21, 2021 Page 7

60

- Image noise often generated by low exposure time, e.g., video
- Most important noise sources:
 - Content-dependent shot noise (Poisson)
 - Dark current noise (Gaussian)
 - Amplifier noise (Gaussian)
 - Reset noise (Gaussian)
- Poisson noise cumbersome to model
- Poisson distribution can be approximated by a Gaussian for higher means

- Image noise often generated by low exposure time, e.g., video
- Most important noise sources:
 - Content-dependent shot noise (Poisson)
 - Dark current noise (Gaussian)
 - Amplifier noise (Gaussian)
 - Reset noise (Gaussian)
- Poisson noise cumbersome to model
- Poisson distribution can be approximated by a Gaussian for higher means
- ► Model: Additive white Gaussian noise (n):

 $\mathbf{c} = \mathbf{F}\mathbf{s} + \mathbf{n}$

Sippel: Reconstruction of Light Spectra from Multispectral Images Chair of Multimedia Communications and Signal Processing July 21, 2021 Page 7

 $\blacktriangleright \text{ Reminder: } \mathbf{c} = \mathbf{Fs} + \mathbf{n}$

Pratt et al. "Spectral estimation techniques for the spectral calibration of a color image scanner"

 $\blacktriangleright \text{ Reminder: } \mathbf{c} = \mathbf{Fs} + \mathbf{n}$

Covariances (independence between noise and spectrum, zero mean):

- Hyperspectral covariance: $\mathbf{K}_{r} = \mathcal{E}\{\mathbf{ss}^{\mathsf{T}}\}$
- ► Multispectral covariance: $\mathbf{K}_{c} = \mathcal{E}\{\mathbf{Fss}^{\mathsf{T}}\mathbf{F}^{\mathsf{T}}\} + \mathcal{E}\{\mathbf{nn}^{\mathsf{T}}\} = \mathbf{F}\mathbf{K}_{r}\mathbf{F}^{\mathsf{T}} + \mathbf{N}$
- Multispectral-hyperspectral cross-covariance: $\mathbf{K}_{rc} = \mathbf{K}_r \mathbf{F}^T$

Pratt et al. "Spectral estimation techniques for the spectral calibration of a color image scanner"

 $\blacktriangleright \text{ Reminder: } \mathbf{c} = \mathbf{Fs} + \mathbf{n}$

Covariances (independence between noise and spectrum, zero mean):

- ▶ Hyperspectral covariance: $\mathbf{K}_{r} = \mathcal{E}\{\mathbf{ss}^{\mathsf{T}}\}$
- $\blacktriangleright \text{ Multispectral covariance: } \mathbf{K}_{c} = \mathcal{E}\{\mathbf{Fss}^{\mathsf{T}}\mathbf{F}^{\mathsf{T}}\} + \mathcal{E}\{\mathbf{nn}^{\mathsf{T}}\} = \mathbf{F}\mathbf{K}_{r}\mathbf{F}^{\mathsf{T}} + \mathbf{N}$
- Multispectral-hyperspectral cross-covariance: $\mathbf{K}_{rc} = \mathbf{K}_r \mathbf{F}^T$

Wiener filter:

$$\mathbf{\hat{s}}^{\mathsf{WF}} = \mathbf{K}_{\mathsf{rc}}\mathbf{K}_{\mathsf{c}}^{-1}\mathbf{c} = \mathbf{K}_{\mathsf{r}}\mathbf{F}^{\mathsf{T}}(\mathbf{F}\mathbf{K}_{\mathsf{r}}\mathbf{F}^{\mathsf{T}} + \mathbf{N})^{-1}\mathbf{c}.$$

Pratt et al. "Spectral estimation techniques for the spectral calibration of a color image scanner"

FRIEDRICH-ALEXANDER UNIVERSITÄT TECHNISCHE FAKULTÄT

 $\blacktriangleright \text{ Reminder: } \mathbf{c} = \mathbf{Fs} + \mathbf{n}$

Covariances (independence between noise and spectrum, zero mean):

- ► Hyperspectral covariance: $\mathbf{K}_{r} = \mathcal{E}\{\mathbf{ss}^{\mathsf{T}}\}$
- $\blacktriangleright \text{ Multispectral covariance: } \mathbf{K}_{\mathsf{c}} = \mathcal{E}\{\mathbf{Fss}^{\mathsf{T}}\mathbf{F}^{\mathsf{T}}\} + \mathcal{E}\{\mathbf{nn}^{\mathsf{T}}\} = \mathbf{FK}_{\mathsf{r}}\mathbf{F}^{\mathsf{T}} + \mathbf{N}$
- Multispectral-hyperspectral cross-covariance: $\mathbf{K}_{\mathsf{rc}} = \mathbf{K}_{\mathsf{r}} \mathbf{F}^{\mathsf{T}}$
- Wiener filter:

$$\mathbf{\hat{s}}^{\mathsf{WF}} = \mathbf{K}_{\mathsf{rc}}\mathbf{K}_{\mathsf{c}}^{-1}\mathbf{c} = \mathbf{K}_{\mathsf{r}}\mathbf{F}^{\mathsf{T}}(\mathbf{F}\mathbf{K}_{\mathsf{r}}\mathbf{F}^{\mathsf{T}} + \mathbf{N})^{-1}\mathbf{c}.$$

Smoothed pseudoinverse:

$$\mathbf{\hat{s}}^{\mathsf{SP}} = \mathbf{M}^{-1} \mathbf{F}^{\mathsf{T}} (\mathbf{F} \mathbf{M}^{-1} \mathbf{F}^{\mathsf{T}})^{-1} \mathbf{c}$$

Pratt et al. "Spectral estimation techniques for the spectral calibration of a color image scanner"

Idea: Exploit spatial correlation to encounter noise

Murakami et al. "Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation"

- ► Idea: Exploit spatial correlation to encounter noise
- Adjust correlation matrix:

$$\mathbf{\hat{S}}^{\mathsf{SSW}}(x,y) = \mathbf{P}\mathbf{K}\mathbf{\hat{F}}^{\mathsf{T}}(\mathbf{\hat{F}}\mathbf{K}\mathbf{\hat{F}}^{\mathsf{T}} + \mathbf{\hat{N}})^{-1}\mathbf{C}_{\mathsf{b}}^{x,y}$$

- $\blacktriangleright~ {\bf \hat{F}}$ and ${\bf \hat{N}}$ extended (block-)diagonal matrices
- \triangleright **C**^{*x*,*y*}: Vectorized image block
- ▶ P: Picks out spectrum of pixel in the center

Murakami et al. "Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation"

- ► Idea: Exploit spatial correlation to encounter noise
- Adjust correlation matrix:

$$\mathbf{\hat{S}}^{\mathsf{SSW}}(x,y) = \mathbf{P}\mathbf{K}\mathbf{\hat{F}}^{\mathsf{T}}(\mathbf{\hat{F}}\mathbf{K}\mathbf{\hat{F}}^{\mathsf{T}} + \mathbf{\hat{N}})^{-1}\mathbf{C}_{\mathsf{b}}^{x,y}$$

- $\blacktriangleright~ {\bf \hat{F}}$ and ${\bf \hat{N}}$ extended (block-)diagonal matrices
- \triangleright **C**^{*x*,*y*}: Vectorized image block
- ▶ P: Picks out spectrum of pixel in the center
- Combine spatial and spectral covariance:

$$\mathbf{K} = \mathbf{K}_{\mathsf{s}} \otimes \mathbf{K}_{\mathsf{r}}.$$

Murakami et al. "Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation"

Spatial correlation modeled by first order Markov process:

$$\mathbf{K}_{\mathsf{s}} = \mathbf{R}(p) \otimes \mathbf{R}(p)$$

▶ with (blocksize *B*_r, decay *p*):

$$\mathbf{R}(p) = \begin{pmatrix} p^{0} & p^{1} & \cdots & p^{B_{r}-1} \\ p^{1} & p^{0} & \cdots & p^{B_{r}-2} \\ \vdots & \vdots & \ddots & \vdots \\ p^{B_{r}-1} & p^{B_{r}-2} & \cdots & p^{0} \end{pmatrix}$$

July 21, 2021

Page 10

► $\mathbf{R}(p) \otimes \mathbf{R}(p)$ for vertical and horizontal direction Murakami et al. "Color reproduction

Murakami et al. "Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation"

FRIEDRICH-ALEXANDER UNIVERSITÄT TECHNISCHE FAKULTÄT

Novel Reconstruction Method

Noisy image

- Idea: Generate guide image from multispectral images
- Independence of noise leads to much less noise in guide image

Guide image

Sippel: Reconstruction of Light Spectra from Multispectral Images Chair of Multimedia Communications and Signal Processing

Filtering result

Guide is weighted average of multispectral images:

$$\mathbf{G}(x,y) = \sum_{i=1}^{M} \mathbf{w}_i \check{\mathbf{C}}_i(x,y) + \sum_{i=1}^{M} \mathbf{w}_i \mathbf{n}_i =$$
$$= \mathbf{w}^{\mathsf{T}} \check{\mathbf{C}}(x,y) + \mathbf{w}^{\mathsf{T}} \mathbf{n}$$

Sippel et al. "Structure-preserving spectral reflectance estimation using guided filtering "

Guide is weighted average of multispectral images:

$$\mathbf{G}(x,y) = \sum_{i=1}^{M} \mathbf{w}_i \check{\mathbf{C}}_i(x,y) + \sum_{i=1}^{M} \mathbf{w}_i \mathbf{n}_i =$$
$$= \mathbf{w}^{\mathsf{T}} \check{\mathbf{C}}(x,y) + \mathbf{w}^{\mathsf{T}} \mathbf{n}$$

Optimize SNR:

$$\operatorname*{argmax}_{\mathbf{w}} \frac{\mathcal{E}\left[\mathbf{w}^{\mathsf{T}} \check{\mathbf{C}}(x, y) \check{\mathbf{C}}(x, y)^{\mathsf{T}} \mathbf{w}\right]}{\mathcal{E}\left[\mathbf{w}^{\mathsf{T}} \mathbf{n} \mathbf{n}^{\mathsf{T}} \mathbf{w}\right]}$$

Sippel et al. "Structure-preserving spectral reflectance estimation using guided filtering "

Structure-preserving Reflectance Estimation

 Guided filtering idea: Guide indicates regions with edges and smooth regions

He et al. "Guided Image Filtering"

- Guided filtering idea: Guide indicates regions with edges and smooth regions
- Assumption: Noiseless image $\check{\mathbf{S}}_i(u, v)$ is linear combination of G:

$$\check{\mathbf{S}}_i(u,v) = a_{x,y}\mathbf{G}(u,v) + b_{x,y} \quad \forall (u,v) \in w_{x,y}$$

▶ Usually true in small window $w_{x,y}$

He et al. "Guided Image Filtering"

- Guided filtering idea: Guide indicates regions with edges and smooth regions
- ▶ Assumption: Noiseless image $\check{\mathbf{S}}_i(u, v)$ is linear combination of \mathbf{G} :

$$\mathbf{\check{S}}_{i}(u,v) = a_{x,y}\mathbf{G}(u,v) + b_{x,y} \quad \forall (u,v) \in w_{x,y}$$

- ▶ Usually true in small window $w_{x,y}$
- Average in smooth regions via $b_{x,y}$

He et al. "Guided Image Filtering"

- Guided filtering idea: Guide indicates regions with edges and smooth regions
- ▶ Assumption: Noiseless image $\check{\mathbf{S}}_i(u, v)$ is linear combination of \mathbf{G} :

$$\mathbf{\check{S}}_{i}(u,v) = a_{x,y}\mathbf{G}(u,v) + b_{x,y} \quad \forall (u,v) \in w_{x,y}$$

- ▶ Usually true in small window $w_{x,y}$
- Average in smooth regions via $b_{x,y}$
- ▶ Use linear regression in regions with edges via $a_{x,y}$

He et al. "Guided Image Filtering"

- Images from natural scenes
- ► Wavelengths: 440nm to 920nm
- ▶ 10nm steps \rightarrow 49 hyperspectral channels

Eckhard et al. "Outdoor scene reflectance measurements using a Bragg-grating-based hyperspectral imager"

- Images from natural scenes
- ▶ Wavelengths: 440nm to 920nm
- ▶ 10nm steps → 49 hyperspectral channels
- Filters: Different colors indicate different filters

Eckhard et al. "Outdoor scene reflectance measurements using a Bragg-grating-based hyperspectral imager"

► Metric spectral angle:

$$\mathsf{SA}(\mathbf{s}, \mathbf{\hat{s}}) = \arccos\left(\frac{\mathbf{s}^{\mathsf{T}}}{||\mathbf{s}||_{2}} \mathbf{\hat{s}}\right)$$

Metric spectral angle:

$$\mathsf{SA}(\mathbf{s}, \mathbf{\hat{s}}) = \arccos\left(\frac{\mathbf{s}^{\mathsf{T}}}{||\mathbf{s}||_2}\frac{\mathbf{\hat{s}}}{||\mathbf{\hat{s}}||_2}\right)$$

Measures the angle between two spectrum vectors
 Lower is better

Metric spectral angle:

$$\mathsf{SA}(\mathbf{s}, \mathbf{\hat{s}}) = \arccos\left(\frac{\mathbf{s}^{\mathsf{T}}}{||\mathbf{s}||_2}\frac{\mathbf{\hat{s}}}{||\mathbf{\hat{s}}||_2}\right)$$

- Measures the angle between two spectrum vectorsLower is better
- Simulated poisson noise to evaluate noise behaviour:

$$\mathbf{C}_{i}(x,y) \sim \frac{\mathcal{P}\left(l \ \check{\mathbf{C}}_{i}(x,y)\right)}{l}$$

Metric spectral angle:

$$\mathsf{SA}(\mathbf{s}, \mathbf{\hat{s}}) = \arccos\left(\frac{\mathbf{s}^{\mathsf{T}}}{||\mathbf{s}||_2} \frac{\mathbf{\hat{s}}}{||\mathbf{\hat{s}}||_2}\right)$$

- Measures the angle between two spectrum vectorsLower is better
- Simulated poisson noise to evaluate noise behaviour:

$$\mathbf{C}_i(x,y) \sim \frac{\mathcal{P}\left(l \ \check{\mathbf{C}}_i(x,y)\right)}{l}$$

Intensity level l indicates lighting conditions

Metric spectral angle:

$$\mathsf{SA}(\mathbf{s}, \mathbf{\hat{s}}) = \arccos\left(\frac{\mathbf{s}^{\mathsf{T}}}{||\mathbf{s}||_2}\frac{\mathbf{\hat{s}}}{||\mathbf{\hat{s}}||_2}\right)$$

Simulated poisson noise to evaluate noise behaviour:

$$\mathbf{C}_i(x,y) \sim \frac{\mathcal{P}\left(l \ \check{\mathbf{C}}_i(x,y)\right)}{l}$$

▶ Intensity level *l* indicates lighting conditions Low intensity level corresponds to high noise influence

July	21, 2021	
	Page 15	rw>

Sippel: Reconstruction of Light Spectra from Multispectral Images

July 21, 2021 Page 16

Chair of Multimedia Communications and Signal Processing

Spectroscopy has tons of applications

- Spectroscopy has tons of applications
- \blacktriangleright Multispectral camera to record scene \rightarrow Cheaper than a hyperspectral camera

- Spectroscopy has tons of applications
- \blacktriangleright Multispectral camera to record scene \rightarrow Cheaper than a hyperspectral camera
- ▶ Goal: Reconstruct spectra from multispectral images

- Spectroscopy has tons of applications
- \blacktriangleright Multispectral camera to record scene \rightarrow Cheaper than a hyperspectral camera
- ▶ Goal: Reconstruct spectra from multispectral images
- ▶ Basic methods: Smoothed pseudoinverse, Wiener filter

- Spectroscopy has tons of applications
- \blacktriangleright Multispectral camera to record scene \rightarrow Cheaper than a hyperspectral camera
- ► Goal: Reconstruct spectra from multispectral images
- ▶ Basic methods: Smoothed pseudoinverse, Wiener filter
- Spatial correlation to encounter noise

- Spectroscopy has tons of applications
- \blacktriangleright Multispectral camera to record scene \rightarrow Cheaper than a hyperspectral camera
- ► Goal: Reconstruct spectra from multispectral images
- ▶ Basic methods: Smoothed pseudoinverse, Wiener filter
- Spatial correlation to encounter noise
- ▶ Novel reconstruction method for noisy scenarios based on guided filtering

