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Problem Statement
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Pipeline

ci

Light source

Imaged object Filter Lens Camera Multispectral image C(x, y)

q(λ)

r(λ) fi(λ) o(λ) m(λ)

x

y
i

Imaging pipeline

ci =
∫ λmax

λmin
q(λ)r(λ)fi(λ)o(λ)m(λ) dλ

I Often light source, imaged
object, lens, and camera spectral
transfer functions not known
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Mathematical Formulation

I Reconstructable spectrum: s(λ) = q(λ)r (λ) o(λ)m(λ)

I Substituted equation: ci = ∫ λmax
λmin fi(λ)s(λ) dλ → Inverting integration

cumbersome

I Discretization: ci = ∑N
j=1 Fijsj or c = Fs

I c ∈ RM : Multispectral channels for one pixel
I F ∈ RM×N : Sampled filter as matrix
I s ∈ RN : Sampled spectrum for one pixel

Underdetermined System
I Typically: M << N → Underdetermined linear system of equations
I Prior knowledge must be embedded
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Spectra Statistics
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Smoothed Pseudoinverse
I Optimization problem:

ŝSP = argmin
s

||Ds||22
s.t. c = Fs

I First-order difference matrix:

D1 =


1 −1 0 · · · 0
0 1 −1 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 −1


I Closed-form solution with M = DTD + αI:

ŝSP = M−1FT(FM−1FT)−1c
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Reference Reconstructed
Pratt et al. ”Spectral estimation techniques for the spectral calibration of a color image scanner”
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ŝSP = M−1FT(FM−1FT)−1c

440 540 640 740 840 920
Wavelength in nm

0.50

0.55

0.60

0.65

Sp
ec

tr
al

re
fle

ct
iv

ity

Reference Reconstructed
Pratt et al. ”Spectral estimation techniques for the spectral calibration of a color image scanner”

Sippel: Reconstruction of Light Spectra from Multispectral Images
Chair of Multimedia Communications and Signal Processing

July 21, 2021
Page 6



Smoothed Pseudoinverse
I Optimization problem:
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Noise
I Image noise often generated by low

exposure time, e.g., video

I Most important noise sources:
I Content-dependent shot noise (Poisson)
I Dark current noise (Gaussian)
I Amplifier noise (Gaussian)
I Reset noise (Gaussian)

I Poisson noise cumbersome to model
I Poisson distribution can be approximated

by a Gaussian for higher means
I Model: Additive white Gaussian noise (n):

c = Fs + n
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Wiener Filter
I Reminder: c = Fs + n

I Covariances (independence between noise and spectrum, zero mean):
I Hyperspectral covariance: Kr = E{ssT}
I Multispectral covariance: Kc = E{FssTFT}+ E{nnT} = FKrFT + N
I Multispectral-hyperspectral cross-covariance: Krc = KrFT

I Wiener filter:

ŝWF = KrcK−1
c c = KrFT(FKrFT + N)−1c.

I Smoothed pseudoinverse:

ŝSP = M−1FT(FM−1FT)−1c

Pratt et al. ”Spectral estimation techniques for the spectral calibration of a color image scanner”
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Spatio-spectral Wiener Filter
I Idea: Exploit spatial correlation to encounter noise

I Adjust correlation matrix:

ŜSSW(x, y) = PKF̂T(F̂KF̂T + N̂)−1Cx,y
b

I F̂ and N̂ extended (block-)diagonal matrices
I Cx,y

b : Vectorized image block
I P: Picks out spectrum of pixel in the center
I Combine spatial and spectral covariance:

K = Ks ⊗Kr.

I ⊗: Kronecker product

Murakami et al. ”Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation”

Sippel: Reconstruction of Light Spectra from Multispectral Images
Chair of Multimedia Communications and Signal Processing

July 21, 2021
Page 9



Spatio-spectral Wiener Filter
I Idea: Exploit spatial correlation to encounter noise
I Adjust correlation matrix:
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Spatio-spectral Wiener Filter

I Spatial correlation modeled by first order
Markov process:

Ks = R(p)⊗R(p)

I with (blocksize Br, decay p):

R(p) =


p0 p1 · · · pBr−1

p1 p0 · · · pBr−2

... ... . . . ...
pBr−1 pBr−2 · · · p0


I R(p)⊗R(p) for vertical and horizontal

direction
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Murakami et al. ”Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation”
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Novel Reconstruction Method
I Idea: Generate guide image from multispectral images
I Independence of noise leads to much less noise in guide image

Guide image Noisy image Filtering result
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Structure-preserving Reflectance Estimation

I Guide is weighted average of multispectral
images:

G(x, y) =
M∑
i=1

wiČi(x, y) +
M∑
i=1

wini =

=wTČ(x, y) + wTn

I Optimize SNR:

argmax
w

E
[
wTČ(x, y)Č(x, y)Tw

]
E [wTnnTw]

+

0.06

0.34

0.28

0.29

0.03

Sippel et al. ”Structure-preserving spectral reflectance estimation using guided filtering ”

Sippel: Reconstruction of Light Spectra from Multispectral Images
Chair of Multimedia Communications and Signal Processing

July 21, 2021
Page 12



Structure-preserving Reflectance Estimation

I Guide is weighted average of multispectral
images:

G(x, y) =
M∑
i=1
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Structure-preserving Reflectance Estimation

I Guided filtering idea: Guide indicates regions with edges and smooth
regions

I Assumption: Noiseless image Ši(u, v) is linear combination of G:

Ši(u, v) = ax,yG(u, v) + bx,y ∀(u, v) ∈ wx,y

I Usually true in small window wx,y

I Average in smooth regions via bx,y

I Use linear regression in regions with edges via ax,y

He et al. ”Guided Image Filtering”
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I Assumption: Noiseless image Ši(u, v) is linear combination of G:
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Evaluation

I Images from natural scenes

I Wavelengths: 440nm to 920nm

I 10nm steps → 49 hyperspectral
channels

I Filters: Different colors indicate
different filters 1 10 20 30 40 49

Hyperspectral channel
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Wavelength in nm

Eckhard et al. ”Outdoor scene reflectance measurements using a Bragg-grating-based hyperspectral imager”
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Evaluation

I Metric spectral angle:

SA(s, ŝ) = arccos
(

sT

||s||2
ŝ
||̂s||2

)

I Measures the angle between two spectrum vectors
I Lower is better

I Simulated poisson noise to evaluate noise behaviour:

Ci(x, y) ∼
P
(
l Či(x, y)

)
l

I Intensity level l indicates lighting conditions
I Low intensity level corresponds to high noise influence
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Evaluation
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Intensity level
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Conclusion

I Spectroscopy has tons of applications

I Multispectral camera to record scene → Cheaper than a hyperspectral
camera

I Goal: Reconstruct spectra from multispectral images

I Basic methods: Smoothed pseudoinverse, Wiener filter

I Spatial correlation to encounter noise

I Novel reconstruction method for noisy scenarios based on guided filtering
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