

The Rise of Video Communication and its Impact on Climate Change

Dr.-Ing. Christian J. Herglotz
Chair of Multimedia Communications
and Signal Processing

From Fiction to Reality

In the year 1910

By Villemard - http://expositions.bnf.fr/utopie/grand/3_95b2.htm A reproduction of the early 20th century card / Репродукция, скан бумажной карточкиТransferred from en.wikipedia; transferred to Commons by User:Harryzilber using CommonsHelper., Public Domain, https://commons.wikimedia.org/w/index.php?curid=7491953

From Fiction to Reality

In the year 1910

And today

By Villemard - http://expositions.bnf.fr/utopie/grand/3_95b2.htm A reproduction of the early 20th century card / Репродукция, скан бумажной карточкиТransferred from en.wikipedia; transferred to Commons by User:Harryzilber using CommonsHelper., Public Domain, https://commons.wikimedia.org/w/index.php?curid=7491953

Online Video Today

Pcgames.de, amazon.de, theverge.com, internetmatters.com, wikipedia.org, tagesspiegel.de, facebook.com, tiktok.com, youtube.com. Medienfachberatung.de, sky.de

Online Video Today

Pcgames.de, amazon.de, theverge.com, internetmatters.com, wikipedia.org, tagesspiegel.de, facebook.com, tiktok.com, youtube.com. Medienfachberatung.de, sky.de

Some Facts

Data volume of global internet video to TV traffic from 2016 to 2021

(in petabytes per month)

https://www.statista.com/statistics/267222/global-data-volume-of-internet-video-to-tv-traffic/

Some Facts

Internet Traffic at Europe's biggest Internet Exchange Point (DE-CIX Francfurt)

5-year graph

average traffic in bits per second peak traffic in bits per second Current 6645.7 G
Averaged 4644.7 G
Graph Peak 10385.6 G
DE-CIX All-Time Peak 10385.57
Created at 2021-07-22 10:29 UTC
Copyright 2021 DE-CIX Management GmbH

https://www.de-cix.net/en/locations/frankfurt/statistics

https://www.pngitem.com/middle/hwToi_28-collection-of-man-in-suit-clipart-png/https://clipartart.com/categories/power-plant-clipart.html
http://clipart-library.com/plane-cliparts.html
https://www.pinterest.com/pin/734438651707654395/

ttps://www.vecteezy.com/free-vector/mobile-man

The Shift project (July 2019) [1]:

In 2018, video communications caused 1% of greenhouse gas emissions.

The annual growth in video data flow is larger than 25%.

[1] The Shift Project: CLIMATE CRISIS: THE UNSUSTAINABLE USE OF ONLINE VIDEO. Executive summary. July 2019. online available: https://theshiftproject.org/wp-content/uploads/2019/07/Excutive-Summary EN The-unsustainable-use-of-online-video.pdf

Energy Consumption in Online Video

Energy Consumption in 2017

The Shift Project: "Lean ICT: Towards Digital Sobriety", https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf, March 2019.

Outline

Hardware Setup for Online Video

Power Consumption of Smartphones

Energy Optimization for Decoding

Outlook

Outline

Hardware Setup for Online Video

Power Consumption of Smartphones

Energy Optimization for Decoding

Outlook

Hardware Setup for Online Video

Tasks in Online Video

Sender

- Capture
- **Enhancement**
- Encoding
- Storage

Transmission

Receiver

- Receive stream
- Decoding
- Error concealment
- Rendering
- Display

Tasks in Online Video

- Routing
- Transmission
- Access networks: Fixed / mobile

Tasks in Online Video

- Transmission
- React to requests
- Storage
- Encoding
- CDN maintenance

..

Outline

Hardware Setup for Online Video

Power Consumption of Smartphones

Energy Optimization for Decoding

Outlook

Mobile Devices

Measurement Setup

Herglotz, Christian, et al. "Power modeling for video streaming applications on mobile devices." *IEEE Access* 8 (2020): 70234-70244.

Mobile Devices

Measurement Setup

Power consumption

Mobile Devices

Extensive testing

- Bitrate, resolution, frame rate
- Local, WiFi, 3G
- Screen brightness
- HEVC / H.264
- Audio on / off...
- Different players
- ...

	2

k	Variable	Description	Param. value ($k=11$)	
1	1	Constant offset	$\Pi_0 = 0.90$	
2	$b_{ m wifi}$	Bitrate (Wi-Fi)	$\beta_{\text{wifi}} = 0.21$	
3	H	Lin. display brightness	$\kappa = 0.79$	
4	$f_{ m v}$	Video frame rate	$\epsilon_{\mathrm{frame}} = 0.35$	
5	F_{3G}	3G connection offset	$\Gamma_{3G} = 0.49$	
6	L	Quadr. disp. brightness	$\lambda = 0.00$	
7	$F_{\mathbf{v}}$	Video decoding offset	$\Psi_0 = 0.00$	
8	$b_{ m v}$	Video bitrate	$\epsilon_{ m bit} = -0.38$	
9	$F_{ m wifi}$	Wi-Fi connection offset	$\Gamma_{\mathrm{wifi}} = 0.17$	
10	$F_{\rm a}$	Audio decoding offset	$\Phi = 0.11$	
11	G	Pixels per second	ho = 0.20	

Most important components

Optimal Sptial Scaling

Power-distortion curves for spatial scaling

Outline

Hardware Setup for Online Video

Power Consumption of Smartphones

Energy Optimization for Decoding

Outlook

Exploit energy estimation in encoding

Classic rate-distortion optimization (RDO)

$$\min J = \min D + \lambda \cdot R$$

Decoding-energy-rate-distortion optimization (DERDO)

$$\min J = \min D + \lambda \cdot R + \lambda_{\rm E} \cdot E$$

Implementation in x265-encoder

FD: fastdecode

Herglotz, Christian, et al. "Decoding Energy Optimal Encoding for x265." accepted for International Workshop on Multimedia Signal Processing (MMSP), September 2020.

Outline

Hardware Setup for Online Video

Power Consumption of Smartphones

Energy Optimization for Decoding

Outlook

Outlook

- Energy optimizations in VVC
- Encoder-side energy analysis and optimization
- Global energy optimization

Further Reading

- The Shift Project: CLIMATE CRISIS: THE UNSUSTAINABLE USE OF ONLINE VIDEO. Executive summary. July 2019. online available: https://theshiftproject.org/wp-content/uploads/2019/07/Excutive-Summary EN The-unsustainable-use-of-online-video.pdf
- Futuresource consulting: The Sustainable Future of Video Entertainment From creation to consumption, August2020, https://www.interdigital.com/download/5fa0694a8934bfdf5f00596a

Backup

Online data flow per content [1]

Energy consumption of a software decoder

Estimated energy

$$\hat{E} = \sum_{i=1}^{N} n_i \cdot e_i$$

i: Feature index

 e_i : Specific energy coefficient

 n_i : Frequency of occurences

Energy consumption of a software decoder

Estimated energy

$$\hat{E} = \sum_{i=1}^{N} n_i \cdot e_i$$

i: Feature index

 e_i : Specific energy coefficient

 n_i : Frequency of occurences

Example 1: Decoding energy of one intra coded CU

PU size	Specific energy
32x32	273ய
16x16	70µJ
8x8	25μJ
4x4	8µЈ

Energy consumption of a software decoder

Estimated energy

$$\hat{E} = \sum_{i=1}^{N} n_i \cdot e_i$$

i: Feature index

 e_i : Specific energy coefficient

 n_i : Frequency of occurences

Example 2: Fractional pel filtering

Energy consumption of a software decoder

Estimated energy

$$\hat{E} = \sum_{i=1}^{N} n_i \cdot e_i$$

i: Feature index

 e_i : Specific energy coefficient

 n_i : Frequency of occurences

Example 2: Fractional pel filtering

Ans many more...

Energy Consumption for Online Lectures

Ringvorlesung "FAUagainstCO2", SS 2020

Energy Consumption for Online Lectures

- 200 participants
- 2 GB of data
- 2 hours

1 Server: 1 kWh

Transmission: 201 x 0,04 kWh = 8,04 kWh Terminals: 100 PCs x 150 W x 2 h + 101 tablets x 40 W x 2 h = 38,08 kWh

Energy Consumption for Online Lectures

Overall CO2-Production:

Туре	CO ₂
100 km car drive	20,0 kg
Small house per year	2.828,0 kg
Passive house per year	424,0 kg
Flight FRA-NY per person	1.000,0 kg
Train Erlangen – Munich	6,9 kg
Online lecture for 200 students	7,07 kg

Energy Consumption for Online Lectures

Overall CO2-Production:

