
© Fraunhofer HHI | 26.07.2021 | 1

INSIGHTS INTO OPEN AND OPTIMIZED
VVC IMPLEMENTATIONS

Presenter:

Adam Wieckowski
Fraunhofer HHI, Berlin, Germany

SVCP 2021

VVC™ is a trademark of Media Coding Industry Forum

© Fraunhofer HHI | 26.07.2021 | 2

VVC – Open, Optimized Implementations
Fraunhofer HHI developed optimized VVC software

 Versatile Video Encoder (VVenC)

 Goal: fast “real world” implementation while
maintaining high coding efficiency (~VTM)

 Versatile Video Decoder (VVdeC)

 Goal: enable 2160p60 10bit live decoding on a
powerful multi-core CPU

 Source code on GitHub since Sep. 2020

 Copyright 3-clause BSD license since Dec. 2020

© Fraunhofer HHI | 26.07.2021 | 3

VVenC – At a Glance
Current version: v1.0.0 released in May 2021

 5 predefined quality/speed presets:

 faster, fast, medium, slow, slower

 16x to 1040x speedup over VTM (8 threads, UHD)

 “real world” features:

 1-pass and 2-pass VBR rate control

 Subjective quality optimization

 Multithreading

 Simple easy to use C interface

 Expert mode, VTM-style interface

 Happy to see first non-HHI contributions

© Fraunhofer HHI | 26.07.2021 | 4

VVenC – Multi-Threaded Results
Comparison to other state-of-the-art encoders

 VVenC 1.0.0 compared to:

 HM-16.22: Over 40% BD-rate gains at
75% runtime up to 10% gains at 5%
runtime

 VTM-12: VVenC is much faster, keeps
best coding efficiency plus pareto-
optimal runtime-scaling

 AV1 aomenc 3.0: VVenC has higher
BD-rate at comparable runtime

 x265 3.4: VVenc has significantly
better BD-rate, catching up with
runtime

HM-16.22

VTM 12.0

slow

slower
veryslow

placebo

cpuUsed0
cpuUsed1

cpuUsed2
cpuUsed3

cpuUsed4
cpuUsed5

faster

fast

medium

slow slower
-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

0,3% 1,0% 4,0% 16,0% 64,0% 256,0% 1024,0%

P
SN

R
 B

D
-R

a
te

EncT

HM-16.22

VTM 12.0

x265 3.4

aomenc 3.0

VVenC 0.1.0.0

VVenC 0.2.1.0

VVenC 0.3.0.0

VVenC 1.0.0

See Annex A for detailed settings

© Fraunhofer HHI | 26.07.2021 | 5

VVenC – Development Approach
Main objectives in VVenC development

 Implementation of usability features, e.g. rate control, subj. opt., and multithreading

 Improved implementation of the algorithms, including vectorization with SIMD

 Mostly ported from VVdeC, but also encoder specific incl. fwd. Tr, MCTF and more

 Improved design of the search algorithms at various levels

 Various fast strategies for most tools and tool combinations

 Configuration space exploration for present derivation

 Roadplan for future version

 More usability features (making the encode more versatile)

 Further speedups (both better impl. and algs.)

 Improved compression performance, e.g. using encoding preanalysis

© Fraunhofer HHI | 26.07.2021 | 6

VVenC – Preset derivation
VVenC configuration space exploration vs HM-16.22

 Iterative Pareto-Set approximation

 Start at “HEVC”-like config

 Next step based on “Tool-On” test

 Both coding tools and speedups

 Pareto Set with and without speedups

 2x speedup up to around medium

 Many tools with very good gain

 Less speedups towards slow and slower

 Expensive last bit of efficiency

 In v1.1: make the starting point even faster!

-50%

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

3,1% 6,3% 12,5% 25,0% 50,0% 100,0% 200,0% 400,0%

P
SN

R
 B

D
-R

a
te

 v
s

H
M

Runtime vs HM

No speedups

Pareto set

Presets

medium

slow

slower

fast

faster

© Fraunhofer HHI | 26.07.2021 | 7

VVenC – Presets

QT[X,Y], BTT[X,Y]
max. tree depth
[Intra,Inter]

Coding tool

Implicit tool

Encoder
optimization

“faster”

CTU64, QT44,
BTT00

SAO, CCLM, TS
(for SCC), TMVP

Deblocking, SH,
implicit MTS,
DMVR, BDOF

fast RDOQ, fast
ME/partitioning,
gradient based
partitioning

“fast”

BTT10

Linear ALF,
CC-ALF,
Affine,
AMVR,
LFNST,

MCTF

“medium”

CTU128, BTT21

LMCS, DQ (SH),
JCCR, MRL, MIP,
SMVD, MMVD,
SBTMVP, GPM

DBLF search opt,
fast intra
combinations

“slow”

BTT32

SBT, CIIP

AMVR, GPM

gradient
based
partitioning,
fast intra
combi.

“slower”

BTT33

non-lin. ALF,
expl. MTS
(impl. MTS)

Affine, ISP,
MIP, SMVD,
MMVD

fast ME,
some fast
partitioning

© Fraunhofer HHI | 26.07.2021 | 8

VVenC – Preset performance for various use-cases

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

0,4% 1,6% 6,3% 25,0% 100,0% 400,0% 1600,0%

Non CTC, HHIs Berlin Set for Verification (HD and UHD)
HM 16.22
VTM 12.0
Pareto set
Presets
Presets MT

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

0% 1% 2% 3% 6% 13% 25% 50% 100% 200% 400% 800%1600%

Classes A1, A2, B (HD and UHD)
HM 16.22
VTM 12.0
v0.2
Pareto set
Presets
Presets MT

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%
50%

2% 3% 6% 13% 25% 50% 100% 200% 400% 800% 1600%

Classes C, D (low-res) HM 16.22
VTM 12.0
v0.2
Pareto set
Presets
Presets MT

-60%

-40%

-20%

0%

20%

40%

60%

1% 2% 3% 6% 13% 25% 50% 100% 200% 400% 800%

Class F, TGM (screen content coding) HM 16.22
VTM 12.0
v0.2
Pareto set
Presets
Presets MT

© Fraunhofer HHI | 26.07.2021 | 9

VVenC – Preset derivation towards v1.1
VVenC Pareto Set observations

 The curve looks good

 Overall convex characteristics

 Only 6 points between faster and fast

 Two tools take 2/3 of the gain

 Two tools take 2/3 of the runtime

 ALF (w/o clipping) and MCTF (from VTM)

 Idea – split the tools up

 Try get most of the gain

 Minimize the runtime

 Side note – really big impact of ALF and MCTF!

 In VTM almost no runtime increase

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

3,1% 6,3% 12,5%

P
SN

R
 B

D
-R

a
te

 v
s

H
M

Runtime vs HM

No speedups

Pareto set

Presets

fast

faster

© Fraunhofer HHI | 26.07.2021 | 10

VVenC – Low hanging fruits 1
Tool deconstruction for Adaptive Loop Filter

 Typical optimization process

 Define building blocks making out a tool

 Test the parts independently

 Isolate and optimize the indepedent code parts

 Select optimal configurations for presets

 E.g. ALF working points on top of v1.0 faster

 Full configuration: 8.3% BD-rate gain

 No clipping (1/16 tests): 7.1% BD-rate gain

 ALF in v1.1 fast

 Only ref frames (1/2 tests): 6.7% BD-rate gain

0s

5s

10s

15s

20s

25s

ALF

R
u

n
ti

m
e
 p

e
r

fr
a
m

e

in
 v

1
.0

medium slower vtm-11.0*

-10%

-8%

-6%

-4%

-2%

0%

100% 200% 400% 800%

B
D

-r
a
te

 g
a
in

 v
s

v1
.0

 f
a
st

e
r

Runtime vs v1.0 faster

• in 1.0
× since 1.1

© Fraunhofer HHI | 26.07.2021 | 11

VVenC – Low hanging fruits 2
Tool deconstruction for Motion Compensated Temporal Filtering

 Motion compesated temporal filtering

 Based on simplified motion search

 Applied to frames with many references

 Search up to 4 neighboring frames

 Deconstruction

 Limit the number of frames applied

 Limit the number of reference frames

 Results

 2/3 of the gain for 10% of the runtime

-8%

-6%

-4%

-2%

0%

100% 105% 110% 115% 120% 125%

B
D

-r
a
te

 g
a
in

 v
s

v1
.0

 f
a
st

e
r

Runtime vs v1.0.0 faster

0s

2s

4s

6s

8s

PIC

R
u

n
ti

m
e
 p

e
r

fr
a
m

e
in

 v
1
.0

faster fast medium slow slower vtm-11.0*

• in 1.0
× since 1.1

© Fraunhofer HHI | 26.07.2021 | 12

VVenC – Outlook for v1.1
New starting point and tools split-up

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

1,56% 3,13% 6,25% 12,50% 25,00%

presets (SCC=0)

VVenC v1.0.0 (SCC=0)

VVenC 16.6.2021

VVenC 20.6.2021 MCTFSpeed

VVenC 23.6.2021 MCTF- & ALFSpeed

 Preliminary Pareto Set for v1.1

 Improved starting point (blue line)

 Multiple ALF and MCTF working points

 MCTF: faster and fast, ALF: fast

 Curves converge later, before medium

 Still 7% faster than in v1.0

 Speedup due to other factors

 Filter deconstruction impact

 Versus improved starting point

 Versus old Pareto Set

 Flip side: more options to optimize

medium

fast

faster

-30%

-28%

-26%

6,25% 12,50%

v1.1 fast

-15%

-13%

-11%

3,13% 6,25%

v1.1 faster

© Fraunhofer HHI | 26.07.2021 | 13

VVenC – Development history
Single threaded preset runtime development

0%

20%

40%

60%

80%

100%

v0.1 v0.2 v0.2.1 v0.3 v0.3.1 v1.0 v1.1*

R
e
la

ti
ve

 r
u

n
ti

m
e

 t
o

 f
ir

st
 v

e
rs

io
n

faster fast medium slow slower

 v1.1 to be released soon

 slower only added in v0.2

 Only sped up by 15%

 Biggest improvement in faster and fast

 Better starting points since v0.1

 faster sped up by 70%

 fast sped up by 53%

 v0.2: mostly about gains over v0.1

 v0.3: new starting point, CTU64, no MTT

 medium most optimized pre v0.1

 Main focus in early development

© Fraunhofer HHI | 26.07.2021 | 14

VVenC – Conclusion
Insights into Open and Optimized VVC Implementations

 VVenC (https://github.com/fraunhoferhhi/vvenc)

 Open optimized VVC implementation available on GitHub

 Single-slice, single-tile encoding

 Optimized implementation and search algorithms

 Subjective optimizations, rate-control & multithreading

 Stay tuned for v1.1 with further improvements to faster and fast

 Have a look at the x265 vs VVenC comparison and live decoding demo in 3IT!

https://github.com/fraunhoferhhi/vvenc

© Fraunhofer HHI | 26.07.2021 | 15

VVenC – Conclusion
VTM, VVenC and VVdeC performance

Single-Threaded (ST)

Multi-Threaded (MT) = 8 threads

VVenC 1.0.0 “slower”

-31

-11

-28

-32
-34

-36 -38 -38
-40 -40

-39

-45 -45 -45

9,1

2,2
3,6

5,2

7,4

9,7
9,1 8,8

10,0
9,4

8,0
7,5

3,5
0,5

6,1

0,8 1,3 1,3 1,5 1,8 1,9 1,8 2,0 1,9 1,6 1,6
0,6

0,1 0

2

4

6

8

10

12

14
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
JEM 7.0 VTM-1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0* VVen/deC

ST
VVen/deC

MT

C
o
m

p
le

x
it
y
 /

 r
u

n
ti
m

e
 i
n
c
re

a
s
e

Y
U

V
 B

D
 r

a
te

 [
%

]

YUV BD-Rate savings Enc. Speed Dec. Speed

© Fraunhofer HHI | 26.07.2021 | 16

Thank you for your attention!

adam.wieckowski@hhi.fraunhofer.de hhi.fraunhofer.de/vvc

© Fraunhofer HHI | 26.07.2021 | 17

Backup - Multithreading

© Fraunhofer HHI | 26.07.2021 | 18

VVenC – Development history
Multi-threaded preset runtime development

0%

20%

40%

60%

80%

100%

v0.1 v0.2 v0.2.1 v0.3 v0.3.1 v1.0

R
e
la

ti
ve

 r
u

n
ti

m
e
 t

o
 f

ir
st

 v
e
rs

io
n

faster fast medium slow slower

6 threads 8 threads v0.3 2-3x times faster than v0.2.1

 With 33% more threads

 Added frame parallelism

 Overall, in v1.0

 At least 2x speedup since v0.1

 faster, overall 4/5 runtime reduction

 faster and fast with smaller CTU
since v0.3 (more CTU lines)

© Fraunhofer HHI | 26.07.2021 | 19

VVenC – Multi-threading approach

 A combination of CTU-line and
independent frame parallelism

 Task-based implementation with a single
thread-pool

 1 task per CTU, with following stages

 CU search loop

 LMCS and vertical deblocking

 Horizontal deblocking

 SAO filtering

 3 ALF stages: stats, filter derivation,
application

 Dependencies

 Checked by treadpool

 Checked by tasks themselves

 Task can execute partially

 Automatic load balancing!

 Very good scaling!

 Stats collection the most time-
consuming step

 Final filter derivation requires stats
for the whole picture, increasing
latency if not parallelised

© Fraunhofer HHI | 26.07.2021 | 20

VVenC – Multi-threading visualisation
Benefit of independent frame parallelization

 Less CTU tasks at the beginning and end of
a frame

 “Slope” dependent on WaveFront usage

 Possibly not enough to fill 8+ cores

 “Overlap” indepdent frames

 In practice, just schedule all tasks at once

 Automatic load balancing

 100% utilization until last frame finishes

 Downside: cannot be used without
independent frames (low-delay)

Time

Time

R
e

so
u

rc
e

 u
ti

li
za

ti
o

n

Frame A Frame B

R
e

so
u

rc
e

 u
ti

li
za

ti
o

n

Frame A Frame B

Slope of
resource filling

© Fraunhofer HHI | 26.07.2021 | 21

VVenC – Multi-threading performance
Scaling depedent on preset and additional options

1

3

5

7

9

11

13

15

17

19

1 4 7 10 13 16 19 22 25 28 31

Sp
e
e
d

u
p

[x
]

#threads

UHD results

medium fast faster medium64 Ideal

 Efficient multi-threading and scaling

 fast and faster have more CTU lines

 Can efficiently utilize 20+ cores

 medium, slow and slower uses CTU128

 Good utilization of up to 16 cores

 Relies on indepdent frames

 Minimal efficiency impact!

 Can be improved with CTU64

 Can be improved with normative WPP (- - -)

 Remove above-right CTU dep.

© Fraunhofer HHI | 26.07.2021 | 22

Annex A – Encoder comparison settings
Encoding with preset P for quality Q

 HD and UHD sequences from JVET common test conditions JVET-T2010:

https://jvet-experts.org/doc_end_user/documents/20_Teleconference/wg11/JVET-T2010-v2.zip

 Command line options for different encoders (no sequence specific parameters)

 aomenc

-cpu-used=P -passes=2 -cq-level=Q -kf-min-dist=<1s> -kf-max-dist=<1s> -end-usage=q -

auto-alt-ref=1 -lag-in-frames=19 -threads=0 -bit-depth=10 -static-thresh=0 -drop-

frame=0 -tune=psnr -q-hist=0 -rate-hist=0 -enbale-fwd-kf=1 -codec=av1 -deltaq-mode=0

 x265

-D 10 --preset P --tune psnr --crf Q --keyint <1s> --min-keyint <1s> --profile main10

--output-depth 10 --frame-threads 1 --pools 0 --no-wpp

https://jvet-experts.org/doc_end_user/documents/20_Teleconference/wg11/JVET-T2010-v2.zip

