

Rate-Distortion-Optimization for Learning-Based Image Compression using Adaptive Hierarchical Autoencoders

Fabian Brand
fabian.brand@fau.de
Chair of Multimedia Communications
and Signal Processing

Rate-Distortion Optimization

- Multiple decisions in traditional video coding
 - Block partitioning
 - Prediction mode selection
 - Quantization stepsize
 - Many more ...
- Selection according to rate distortion cost function

$$J = R + \lambda D$$

Typically done by testing multiple settings

Adaptive Block Partitioning

- Block-based image and video compression (e.g. HEVC, VVC)
- Block-size determines
 - Context for prediction
 - Transform lengths
 - Quantization stepsize
- Rule of thumb:
 - Small blocks for detailed content
 - Large blocks for stationary content
- Adaptive partitioning greatly increases coding efficiency

Learning-Based Image Compression

- Main tool: Autoencoder
- Consists of Encoder network e(x)and decoder network d(z)
- Trained on equal input and output, e.g. using MSE

$$L_D = MSE[x; \tilde{x}]$$

Entropy bottleneck between encoder and decoder

$$L_R = H(\hat{z})$$

End-to-end training possible

$$z = e(x)$$

$$\tilde{z} = Q(z)$$

$$\tilde{x} = d(\tilde{z})$$

Rate-Distortion Optimization in E2E Compression

Training on joint loss function

$$L = L_D + \lambda L_R$$

- "Static" RDO
- No free parameters after training
 - No possibility for "dynamic" RDO

RDONet

- Compressive Autoencoder capable of coding at adaptive depth
- Compression after 4, 5 or 6 downsampling steps
- Decision on block-level
- Compression as whole image
- No block division
- No block artifacts

Side Information per block

Brand, Fischer, Kaup: "Rate-Distortion-Optimized Image Compression using an adaptive hierarchical autoencoder with conditional hyperprior", CVPR 2021

Latent Space Units

Latent Space Units

- Downsampling on encoder side
- Upsampling on decoder side
- Transmitting masked latent space
- Redundancy from lower LS-Unit
 - Transmit conditional to previous layer

Conditional Hyperprior

- Compression of each latent space with hyperprior
 - Separate autoencoder transmitting pdf for latent space
- Replace hyperprior autoencoder with conditional autoencoder
- Reducing redundancy from previous latent space

Summary of Network

Coding on different levels of autoencoder possible

Level externally adjustable on block-level

Conditional coding to reduce redundancy between levels

Rate-Distortion Optimization in E2E Compression

• Training on joint loss function $L = L_D + \lambda L_B$

- "Static" RDO
- No free parameters after training
 - No possibility for "dynamic" RDO-
- Externally controlled depth
- Test different depth configurations and pick best

Page 11

RDO Search

- Initialize image coding with lowest latent space
- Test if higher latent space yields better RD-behavior
- Optimizing each 64x64 area individually
 - Global search not feasible
 - Global optimum not found
- Solution: 2-pass RDO
 - Initialize with result of first pass

Experiments

Training

- Train on CLIC Intra + DIV2K + TECNICK
- Random choice of LS depth
- Train for 2000 epochs
- Train on MS-SSIM and MSE
 - MSE needed for stability

$$L_{\text{train}} = D_{\text{ms-ssim}} + 0.1 \cdot D_{\text{mse}} + \lambda_t R$$

Test

- Evaluate on CLIC Intra test set
- Compare 1-pass and 2-pass RDO
- Compare against standard 4 layer autoencoder with hyperprior and context model
- MS-SSIM as distortion metric

$$L_{\text{RDO}} = D_{\text{ms-ssim}} + \lambda_e R$$

Example Block Partitioning (Dark: Small blocks, high level)

$$\lambda_e = 1$$

$$r = 0.096bpp$$

$$\lambda_e = 0.5$$

$$r = 0.104bpp$$

$$\lambda_e = 0.25$$

$$r = 0.119bpp$$

$$\lambda_e = 0.125$$

$$r = 0.136bpp$$

$$\lambda_e = 0.0625$$

$$r = 0.141bpp$$

Standard Autoencoder

r = 0.141bpp

Results

- Five rate-points per model
 - RDO allows multiple rate points per model
 - Optimal behavior if λ match in training and RDO
- Pick one rate point per model for final evaluation

Results

- Rate savings over compression without RDO
- Additional gains by 2-pass RDO
- 7.7% rate saving on average
- Up to 22.5% for single images

	1-pass	2-pass
Worst Case	+7,5%	+3.5%
Best Case	-18.8%	-22.5%
Average	-4.1%	-7.7%

BD-Rates for entire CLIC validation set

Conclusion

- RDONet enables RDO similar to adaptive block partitioning
- Saving 7.7% rate compared to standard autoencoder
- Increase visual quality by adaptive bit allocation
- Transferring concept from traditional video compression to end-to-end image coding

