Versatile Video Coding for Video-based Point Cloud Compression

Dominik Mehlem

Institut für Nachrichtentechnik, RWTH Aachen University

SVCP 202(0)1 Berlin

Motivation

- Capturing and rendering point clouds becomes more and more popular
 - Compression of point cloud data inevitable [Tul+16]

Motivation

- Capturing and rendering point clouds becomes more and more popular
 - Compression of point cloud data inevitable [Tul+16]
- Video-based Point Cloud Compression (V-PCC) designed to be video coder agnostic [3Dg16]

Motivation

- Capturing and rendering point clouds becomes more and more popular
 - Compression of point cloud data inevitable [Tul+16]
- Video-based Point Cloud Compression (V-PCC) designed to be video coder agnostic [3Dg16]
- Current testing only performed with HEVC (CTC) [3DG20]
- ⇒ Approach shall also be proven for other video coding standards

Outline

1. Point Cloud Coding

2. Video-based Point Cloud Compression

3. Simulation Setup and Results

4. Conclusion and Outlook

Point Cloud Coding

- Point cloud
 - 3D collection of points representing objects, e.g. people, rooms or geographic maps
 - Typically captured at 30 fps
 - Approx. 700k to 2 million points per frame
 - Geometry with 10-11 bits and colour attributes with 8-10 bits
- ⇒ Raw data has high amount of bandwidth demand

Point Cloud Coding

- Point cloud
 - 3D collection of points representing objects, e.g. people, rooms or geographic maps
 - Typically captured at 30 fps
 - Approx. 700k to 2 million points per frame
 - Geometry with 10-11 bits and colour attributes with 8-10 bits
- ⇒ Raw data has high amount of bandwidth demand
- ISO/IEC WG7 currently developing two different point cloud compression standards [Sch+18]
 - Video-based Point Cloud Compression (VPCC)
 - mostly suitable for dynamic objects
 - Geometry-based Point Cloud Compression
 - mostly suitable for static scenes and dynamically acquired content

Contents

1. Point Cloud Coding

2. Video-based Point Cloud Compression

3. Simulation Setup and Results

4. Conclusion and Outlook

- General idea:
 - Project 3D point cloud onto 2D video frames
 - Compress video data with conventional video coder

- General idea:
 - Project 3D point cloud onto 2D video frames
 - Compress video data with conventional video coder
- Four streams generated during process

- General idea:
 - Project 3D point cloud onto 2D video frames
 - Compress video data with conventional video coder
- Four streams generated during process
 - Atlas
 - List of all candidate patches and their positions
 - Not compressed by a conventional video coder

- General idea:
 - Project 3D point cloud onto 2D video frames
 - Compress video data with conventional video coder
- Four streams generated during process
 - Atlas
 - List of all candidate patches and their positions
 - Not compressed by a conventional video coder
 - Occupancy map
 - Binary representation of patch boundaries within 2D representation

- General idea:
 - Project 3D point cloud onto 2D video frames
 - Compress video data with conventional video coder
- Four streams generated during process
 - Atlas
 - List of all candidate patches and their positions
 - Not compressed by a conventional video coder
 - Occupancy map
 - Binary representation of patch boundaries within 2D representation
 - Geometry video
 - Greyscale video, specifying depth of patches

- General idea:
 - Project 3D point cloud onto 2D video frames
 - Compress video data with conventional video coder
- Four streams generated during process
 - Atlas
 - List of all candidate patches and their positions
 - Not compressed by a conventional video coder
 - Occupancy map
 - Binary representation of patch boundaries within 2D representation
 - Geometry video
 - Greyscale video, specifying depth of patches
 - Attribute video
 - Attribute information (e.g. color) of patches

Patch generation and packing

- Patch generation
 - Project every point on closest surface of bounding cube
 - Separate into patches
 - Bounding box around patches

Patch generation and packing

- Patch generation
 - Project every point on closest surface of bounding cube
 - Separate into patches
 - Bounding box around patches

Patches in 3D

Atlas patches

Patch generation and packing

- Patch generation
 - Project every point on closest surface of bounding cube
 - Separate into patches
 - Bounding box around patches

Patches in 3D

Atlas patches

- Patch packing
 - Sort patches according to size
 - Pack from largest to smallest
 - Smaller patches fill "gaps"
 - 8 patch orientations possible
 - 4 rotations
 - 4 respective mirror images

VPCC video frame examples

Geometry video

Attribute video

Contents

1. Point Cloud Coding

2. Video-based Point Cloud Compression

3. Simulation Setup and Results

4. Conclusion and Outlook

- Implementation based on TMC2-14.1 [3DG] and VTM-13.0 [JVE] reference softwares
 - Coding of occupancy map, geometry video and attribute video with VVC
 - All-intra and random access lossy configurations
 - 7 sequences with 5 rate points each

- Implementation based on TMC2-14.1 [3DG] and VTM-13.0 [JVE] reference softwares
 - Coding of occupancy map, geometry video and attribute video with VVC
 - All-intra and random access lossy configurations
 - 7 sequences with 5 rate points each

Cat2 test set description

Sequence	geometry bits	# of frames
loot	10	300
redandblack	10	300
soldier	10	300
queen	10	250
longdress	10	300
basketball_player	11	64
dancer	11	64

- Implementation based on TMC2-14.1 [3DG] and VTM-13.0 [JVE] reference softwares
 - Coding of occupancy map, geometry video and attribute video with VVC
 - All-intra and random access lossy configurations
 - 7 sequences with 5 rate points each

Cat2 test set description

Sequence	geometry bits	# of frames
loot	10	300
redandblack	10	300
soldier	10	300
queen	10	250
longdress	10	300
basketball_player	11	64
dancer	11	64

- Implementation based on TMC2-14.1 [3DG] and VTM-13.0 [JVE] reference softwares
 - Coding of occupancy map, geometry video and attribute video with VVC
 - All-intra and random access lossy configurations
 - 7 sequences with 5 rate points each
- Anchor implementation based on TMC2-14.1 and HM16.20+SCM8.8 [Bos13] reference softwares

Cat2 test set description

Sequence	geometry bits	# of frames
loot	10	300
redandblack	10	300
soldier	10	300
queen	10	250
longdress	10	300
basketball_player	11	64
dancer	11	64

Results - Al

BD-rate change for the lossy all-intra case for simulations performed on the full sequences in %.

Coguenae	Geo		Att		
Sequence	D1	D2	Luma	Cb	Cr
loot	-17.3	-15.7	-19.8	-23.4	-15.9
redandblack	-23.5	-23.3	-25.0	-20.7	-5.0
soldier	-12.8	-13.2	-18.1	-27.3	-29.0
queen	-27.9	-27.7	-21.9	-27.0	-21.9
longdress	-20.3	-20.7	-22.5	-21.2	-11.5
basketball	-29.1	-27.1	-22.4	-23.5	-23.3
dancer	-27.7	-25.9	-22.3	-27.0	-23.2
AVG	-22.6	-22.0	-21.7	-24.3	-18.6

- Table shows BD-rate savings [Bjo01] for geometry and attributes
- Consistent performance gain for the sequences of the Cat2 test set is observed

Results - Al

BD-rate change for the lossy all-intra case for simulations performed on the full sequences in %.

Coguenae	Geo		Att		
Sequence	D1	D2	Luma	Cb	Cr
loot	-17.3	-15.7	-19.8	-23.4	-15.9
redandblack	-23.5	-23.3	-25.0	-20.7	-5.0
soldier	-12.8	-13.2	-18.1	-27.3	-29.0
queen	-27.9	-27.7	-21.9	-27.0	-21.9
longdress	-20.3	-20.7	-22.5	-21.2	-11.5
basketball	-29.1	-27.1	-22.4	-23.5	-23.3
dancer	-27.7	-25.9	-22.3	-27.0	-23.2
AVG	-22.6	-22.0	-21.7	-24.3	-18.6

- Table shows BD-rate savings [Bjo01] for geometry and attributes
- Consistent performance gain for the sequences of the Cat2 test set is observed
- Peak D1 performance gain for the "basketball" sequence

Results - Al

BD-rate change for the lossy all-intra case for simulations performed on the full sequences in %.

Coguenae	Geo		Att		
Sequence	D1	D2	Luma	Cb	Cr
loot	-17.3	-15.7	-19.8	-23.4	-15.9
redandblack	-23.5	-23.3	-25.0	-20.7	-5.0
soldier	-12.8	-13.2	-18.1	-27.3	-29.0
queen	-27.9	-27.7	-21.9	-27.0	-21.9
longdress	-20.3	-20.7	-22.5	-21.2	-11.5
basketball	-29.1	-27.1	-22.4	-23.5	-23.3
dancer	-27.7	-25.9	-22.3	-27.0	-23.2
AVG	-22.6	-22.0	-21.7	-24.3	-18.6

- Table shows BD-rate savings [Bjo01] for geometry and attributes
- Consistent performance gain for the sequences of the Cat2 test set is observed
- Peak D1 performance gain for the "basketball" sequence
- Generally higher performance gain for vox11 sequences

Results - RA

BD-rate change for the lossy random access case for simulations performed on the full sequences in %.

0	Geo		Att		
Sequence	D1	D2	Luma	Cb	Cr
loot	-24.7	-24.4	-26.0	-27.2	-21.2
redandblack	-25.6	-26.2	-24.8	-23.3	-16.7
soldier	-21.6	-21.6	-23.0	-27.9	-26.6
queen	-32.3	-32.1	-26.0	-33.7	-29.9
longdress	-25.8	-26.3	-27.1	-29.4	-21.0
basketball	-31.9	-31.0	-25.4	-24.6	-20.3
dancer	-30.7	-29.6	-25.8	-26.9	-17.4
AVG	-27.5	-27.3	-25.4	-27.6	-21.9

- Table shows BD-rate savings [Bjo01] for geometry and attributes
- Consistent performance gain for the sequences of the Cat2 test set is observed
- Peak D1 performance gain for the "queen" sequence
- Generally higher performance gain for vox11 sequences

Results - RA

BD-rate change for the lossy random access case for simulations performed on the full sequences in %.

0	Geo		Att		
Sequence	D1	D2	Luma	Cb	Cr
loot	-24.7	-24.4	-26.0	-27.2	-21.2
redandblack	-25.6	-26.2	-24.8	-23.3	-16.7
soldier	-21.6	-21.6	-23.0	-27.9	-26.6
queen	-32.3	-32.1	-26.0	-33.7	-29.9
longdress	-25.8	-26.3	-27.1	-29.4	-21.0
basketball	-31.9	-31.0	-25.4	-24.6	-20.3
dancer	-30.7	-29.6	-25.8	-26.9	-17.4
AVG	-27.5	-27.3	-25.4	-27.6	-21.9

- Table shows BD-rate savings [Bjo01] for geometry and attributes
- Consistent performance gain for the sequences of the Cat2 test set is observed
- Peak D1 performance gain for the "queen" sequence
- Generally higher performance gain for vox11 sequences
- Gain for RA is larger than for AI

Contents

1. Point Cloud Coding

2. Video-based Point Cloud Compression

3. Simulation Setup and Results

4. Conclusion and Outlook

Conclusion and Outlook

- Conclusion
 - Utilizing VVC instead of HEVC in the VPCC framework shows comparable gain to plain comparison of VVC and HEVC
 - VVC proves to be versatile
- ⇒ The video coder agnostic approach shows VPCC to be future-proof

Conclusion and Outlook

- Conclusion
 - Utilizing VVC instead of HEVC in the VPCC framework shows comparable gain to plain comparison of VVC and HEVC
 - VVC proves to be versatile
- ⇒ The video coder agnostic approach shows VPCC to be future-proof
- Outlook
 - Implementation of point cloud coding specific tools
 - E.g. Occupancy map based RDO
 - No consistent gain for the lossless approach
 - Further investigation in encoder configurations neccessary
 - Might just not be better

Literature

- [3DG] WG7 3DG. TMC2 Test Model. http://mpegx.int-evry.fr/software/MPEG/PCC/TM/mpeg-pcc-tmc2. Accessed: 2020-04-30.
- [3Dg16] WG7 3Dg. V-PCC Codec Description. document ISO/IEC JTC1/SC29/WG11 MPEG N19092. Brussels, BE: JVET, Mar. 2016.
- [3DG19] WG7 3DG. VPCC Codec Description. document ISO/IEC JTC1/SC29/WG11 MPEG N 18892. Geneva, CH: 3D Graphics, Nov. 2019.
- [3DG20] WG7 3DG. Common Test Conditions for PCC. document ISO/IEC JTC1/SC29/WG11 MPEG N 19084. Brussels, BE: 3D Graphics, Feb. 2020.
- [Bjo01] Gisle Bjontegaard. Calculation of average PSNR differences between RD-curves. Technical report Doc. VCEG-M33. Austin, USA: ITU-T SG16/Q6 VCEG, 2001.
- [Bos13] Frank Bossen. Common test conditions and software reference configurations. Technical report. 12th Meeting, Geneva: JCT-VC, Jan. 2013.
- [JVE] WG4 JVET. VVC Test Model. https://vcgit.hhit.fraunhofer.de/. Accessed: 2020-04-30.
- [Sch+18] Sebastian Schwarz et al. "Emerging MPEG Standards for Point Cloud Compression". In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems PP (Dec. 2018), pages 1–1.
- [Tul+16] Christian Tulvan, Rufael Mekuria, Zhu Li, and Sebastien Laserre. *Use Cases for Point Cloud Compression (PCC)*. document ISO/IEC JTC1/SC29/WG11 MPEG N16331. Geneva, CH: JVET, June 2016.

Thank you for your attention

Any questions?

mehlem@ient.rwth-aachen.de

