Adaptive Boundary Exension for Inter Prediction

SVCP 2021

Nicolas Horst – RWTH Aachen Nicolas.Horst@lfb.rwth-aachen.de

Motivation

- Omnidirectional videos typically displayed as viewport steered by the user
- Parts of video are coded in different quality options to reduce bandwidth
- Independently decodable subpictures introduced in Versatile Video Coding (VVC)
- Introduction of "picture boundaries" inside the picture
- Picture boundary effects are highly increased
- \rightarrow Improved boundary extension mechanism useful

[1] JVET-M1032 "Description of Core Experiment 12 (CE12): Tile Set Boundary Handling"

- Boundary Extension Problem
- Adaptive Boundary Extension
 - Derived Approach
 - Signaled Approach
- Details of the Developed Signaled Method
- Results
- Conclusion and Outlook

Boundary Extension

- Inter prediction at picture boundary areas
- Suspend restriction of motion vectors by boundary extension
- Method used in VVC and previous standards
 - Global extension of a subpicture
 - Nearest neighbor padding

Adaptive Boundary Extension

- Using an adaptive extension on a block basis •
- Several prediction algorithms possible •
- This work focuses on linear prediction
- Multiple prediction algorithms need either ٠
 - a selection process on decoder side
 - or explicit signaling

Derived Approach

- Approach presented in Call for Proposals for VVC [1]:
 - Use intra angular prediction algorithms
 - Derive prediction angle from block content
- No extra signaling needed
- Derived angle not always optimal in terms of
 - prediction error
 - continuity across subpicture boundary

• [2] JVET-J0014 "Description of SDR, HDR, and 360° video coding technology proposal by Fraunhofer HHI"

Signaled Approach

- Signaled approach allows to have optimal angle for prediction
- Our Approach:
 - Extension search is performed for every block
 - Signaling done at end of Coding Tree Unit (CTU)
 - number of blocks that need signaling is derived at decoder from motion vectors (parsing dependency)

- Signaling of one extension mode:
 - Enabled flag
 - Sign flag that signals sign of angle
 - Index of used angles is signaled by using fixed-length binarization

• First simple signaling scheme to demonstrate method

• Signaling causes an increase in rate

- Signaling gets more expensive with more angle options
- We choose 4 sets of angles for the experiments
- Non-zero angles can be signaled with 0, 1, 2 or 3 bits for setId 0, 1, 2, 3 respectively
- SetId 3 equals intra angles used in High Efficiency Video Coding

9 Adaptive Boundary Extension for Inter Prediction | Nicolas Horst | SVCP 2021 | 26.07.2021

Simulation Setup

- VTM-8.0 (VVC Test Model) anchor with low delay P configuration
- Disable some advanced inter prediction tools of VVC to avoid interaction
 - geometric partitioning mode (GEO), decoder-side motion vector refinement (DMVR), merge mode with motion vector difference (MMVD), adaptive motion vector resolution (AMVR)
 - Subblock-based prediction methods
- Sequences
 - ChairliftRide, SkateboardInLot, HarborBiking2, KiteFliteWalking2 (all with camera motion)
- Subpicture setup
 - Taken from CE on tile set boundary handling [1]
 - Projection format: CMP in 4608×3072 resolution
 - 384×384 subpicture partitioning \rightarrow 96 subpictures 4608×3072

[1] JVET-M1032 "Description of Core Experiment 12 (CE12): Tile Set Boundary Handling"

- BD-rate numbers for different approaches
 - Only small area affected by the methods
 - simple signaling scheme used
- For signaled approach smaller setIds yield better results because of reduced signaling cost
- Upper limit is theoretical number for what is reachable without signaling factored in
- Selection process chooses between method and anchor based on BD-rate number

sequence	setId	derived	der. sel.	signaled	sign. sel.	combined	upper limit
ChairliftRide	0	-0.10	-0.15	0.03	-0.09	-0.19	-0.71
	1	-0.23	-0.25	0.07	-0.09	-0.26	-0.98
	2	-0.25	-0.27	0.15	-0.05	-0.27	-1.07
	3	-0.22	-0.26	0.26	-0.03	-0.26	-1.11
SkateboardInLot	0	-0.03	-0.16	0.08	-0.12	-0.22	-0.63
	1	-0.05	-0.20	0.11	-0.13	-0.25	-0.75
	2	-0.20	-0.32	0.07	-0.15	-0.40	-1.04
	3	-0.21	-0.32	0.13	-0.12	-0.37	-1.18
HarborBiking2	0	-0.10	-0.16	0.05	-0.10	-0.19	-0.61
	1	-0.26	-0.29	0.06	-0.11	-0.31	-0.99
	2	-0.30	-0.35	0.07	-0.13	-0.38	-1.24
	3	-0.29	-0.35	0.17	-0.09	-0.36	-1.42
KiteFliteWalking2	0	-0.10	-0.15	0.02	-0.10	-0.18	-0.41
	1	-0.16	-0.20	-0.01	-0.11	-0.22	-0.67
	2	-0.24	-0.27	0.04	-0.07	-0.28	-0.89
	3	-0.22	-0.25	0.11	-0.06	-0.27	-1.02
average	0	-0.08	-0.16	0.05	-0.10	-0.20	-0.59
	1	-0.18	-0.23	0.06	-0.11	-0.26	-0.85
	2	-0.25	-0.30	0.08	-0.10	-0.33	-1.06
	3	-0.23	-0.29	0.17	-0.08	-0.32	-1.18

BD-rate numbers in % with (signaled) and without (derived) explicit signaling of the boundary extension mode averaged over all subpictures, the setId with the best BD-rate is marked bold

Visual Comparison

- Example taken from HarborBiking2
- Better continuation of edges across subpicture borders

ours

Conclusion and Outlook

- Possibility to match boundary regions of neighbouring subpictures in the encoding process due to signaling
- Upper limit numbers show promising rate savings when angular prediction is used as prediction method
- Signaled approach gives improvement on some subpictures
- Signaled method currently does not outperform the derived approach in general
 - Signaling cost to high
 - More elaborated signaling is needed
 - MPM, Grouping of modes etc. possible

Region-based activation of method could improve results

Thanks for your attention

