MULTI OBJECT 6D POSE ESTIMATION FOR AR-ASSISTANCE TASKS SVCP 2021, 26.07.2021 – 27.07.2021 Niklas Gard

Agenda

- Motivation
- Deep 6D Object Detection and Registration
- Local Object Tracking
- AR-Applications

Motivation Deep 6D object detection and registration

- Find pose of known 3D shapes with respect to the camera
- Pose: rotation and translation in 3D space

Motivation Object tracking

Find pose of known 3D shapes with respect to the known pose from the last frame

Augmented assistance

AR assistance in facade construction

- Measurement of deviations from target 3D geometry
- Display 3D assistance information

Challenges

Detection

- geometrically similar untextured objects
- occlusions
- learning with synthetic data

Tracking

- real-time
- detect mismatches
- occlusions

Deep 6D Object Detection and Registration

Neural network for pose estimation

How to deal with multiple object classes?

How to deal with multiple object classes? Problems of naive solution

3D keypoints

- Difficult to train
 - Needs a lot of GPU memory in training
- **Decreasing** accuracys with every object

One model per object?

Good accuracy and commonly used

How to know which object is shown if I have 20 trained models?

- Extra 2D detector?
 - More training effort.
- Multiple inferences per image
- Similar objects?
 - All objects must be shown in every training of every model.
- Needs a lot of memory

Object specific parametrization Object as style

- Additional object specific parameters
 - (De)normalization of convolutional layer output depending of predefined output class

Style-transfer with **n** predefined styles

Conditional Instance Normalization (CIN) [1]

Object specific parametrization

Class-adaptive (de)normalization

- I earnable affine transformation parameters dependent of pixel class
- Selection of row in parameter matrix dependent of pixel
- Idea from GAN based semantic image synthesis [1]

[1] Tan, Zhentao, et al. "Efficient Semantic Image Synthesis via Class-

Adaptive Normalization." IEEE Transactions on Pattern Analysis and

Machine Intelligence (2021).

Extending the network structure

Extending the network structure

Modified vector-field decoder

Segmentation-aware transformations

Improving accuracy at occluded areas

Vector-field without segmentation-awareness

Vector-field with segmentation-awareness

- Features upsampling with respect to object boundaries
- Convolution respects object boundaries

Training the network with synthethic data

- Near-fotorealistic rendering
- Scene overview
- Rendered with blender

- Randomise scene parameters
- One object per image
- Rendered with Unreal Engine

Example result Linemod-Occlusion

Estimated segmentation

Groundtruth segmentation

Local Object Tracking

Local 6D tracking Edge features for local pose estimation

- Edges are dominant features of weakly textured objects
- Optical-flow between rendered simulation and camera image (using edge images)

Tracking from the ego-motion perspective

Analysis by synthesis

Pose validation

- Use local tracking as much as possible
- Continuous validation of edge registration error to trigger reinitialization
- Avoid pose drift

AR-Applications

Application in DTwin

AR assistance in facade construction

Warehouse scenario

Construction site

Thank you for your attention!

Niklas Gard niklas.gard@hhi.fraunhofer.de

Fraunhofer HHI, Computer Vision & Graphics

Einsteinufer 37 10587 Berlin

www.hhi.fraunhofer.de/vit/cvg

