Camera Localization and 3D Mapping for Reference Picture Synthesis in VVC

Hossein Golestani

RWTH Aachen University, Germany

Outline

- Motivation
- The proposed method
- Simulation results & Analysis
- Conclusion

Outline

Motivation

- The proposed method
- Simulation results & Analysis
- Conclusion

Target Videos

3

• Videos sequences captured by moving cameras.

More Videos are Coming ...

Credit: Uber

Credit: University of Pennsylvania

Credit: medium.com

Credit: nofilmschool.com

Credit: BookingHunterTV (YTube Channel)

Credit: Bald and Bankrupt (YTube Channel)

5

• Are 2D motion models (translational and affine) efficient enough for those videos?

Thinking about the original 3D environment ...

- If we have a 3D understanding of the scene, we can do a better motion compensation.
- We need
 - 3D scene geometry
 - Camera Parameters (intrinsic and 6DoF-poses)

(a) The reference frame, t=T-1

(b) the current frame, t=T

Extracting 3D data from 2D videos

(a) Input DayLightRoad Video Sequence

Camera Localization and 3D Mapping for Reference Picture Synthesis in VVC | Hossein Golestani | RWTH Aachen University | 27.07.2021 | Summer School on Video Coding and Processing – SVCP2021 | Berlin, Germany

- How to extract 3D data from 2D videos?
- How to use the estimated/captured data for motion compensation?
- How much coding gain can be achieved compared to latest standard?
- How complex is the system?

Outline

- Motivation
- The proposed method
- Simulation results & Analysis
- Conclusion

Main steps

- Motion detection (Flag-3D)
- Camera Localization and Compression (Overhead 1)
- 3D Mesh Reconstruction and Compression (Overhead 2)
- 3D-based Reference Picture Synthesis
- VVC Reference Picture Lists Modifications
- VVC Encoding

The proposed method

Main steps

- Motion detection (Flag-3D)
- Camera Localization and Compression (Overhead 1)
- 3D Mesh Reconstruction and Compression (Overhead 2)
- 3D-based Reference Picture Synthesis
- VVC Reference Picture Lists Modifications
- VVC Encoding

Main steps

- Motion detection (Flag-3D)
- Camera calibration and Compression (Overhead 1)
- 3D Mesh Reconstruction and Compression (Overhead 2)
- 3D-based Reference Picture Synthesis
- VVC Reference Picture Lists Modifications
- VVC Encoding

Camera Calibration using incremental Structure-from-Motion

- Incremental Structure from Motion (SfM) [1]
 - Input: Images $\mathcal{I} = \{I_i \mid i = 1, 2, ..., N_I\}$
 - Output:
 - poses $\mathcal{P} = \{P_c \in SE(3) | c = 1, 2, ..., N_P\}$
 - Reconstructed points $\mathcal{X} = \{X_k \in \mathbb{R}^3 | k = 1, 2, ..., N_X\}$

Steps

- (1) Correspondence Search
- (2) Incremental Reconstruction

[1] Andrew, Alex M. "Multiple view geometry in computer vision." *Kybernetes* (2001).

Camera Localization and 3D Mapping for Reference Picture Synthesis in VVC | Hossein Golestani | RWTH Aachen University | 27.07.2021 | Summer School on Video Coding and Processing – SVCP2021 | Berlin, Germany

An example ...

The proposed method

Main steps

- Motion detection (Flag-3D)
- Camera Localization and Compression (Overhead 1)
- 3D Mesh Reconstruction and Compression (Overhead 2)
- 3D-based Reference Picture Synthesis
- VVC Reference Picture Lists Modifications
- VVC Encoding

Mesh Reconstruction and Compression

- Mesh Reconstruction [2]
 - Depth map estimation
 - Filtering and fusion
- Mesh Decimation [3]
 - Reducing the number of vertices with minimal shape changes
- Mesh Compression [4]
 - Geometry compression
 - Connectivity compression
- An important trade-off between
 - Mesh fidelity

16

- The overhead of sending mesh

(c) Original Mesh (1095 kB)

(b) 3D Geometry for ParkRunning

(d) Decimated and Compressed Mesh (14.5 kB)

[2] Zheng, Enliang, et al. "Patchmatch based joint view selection and depthmap estimation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014.

[3] M. Garland, Y. Zhou, "Quadric-based simplification in any dimension", ACM Trans. Graph- 24, 2 (2005), pp: 209-239.

[4] Draco, Accessed 01.10.2020 [Online], Available: https://github.com/google/draco

The proposed method

Main steps

- Motion detection (Flag-3D)
- Camera Localization and Compression (Overhead 1)
- 3D Mesh Reconstruction and Compression (Overhead 2)
- 3D-based Reference Picture Synthesis
- VVC Reference Picture Lists Modifications
- VVC Encoding

(a) To-be-encoded frame

(b) Reference frame

(a) To-be-encoded frame

(b) Reference frame

(c) 3D setup

(a) To-be-encoded frame

(b) Reference frame

(c) 3D setup

(d) Synthesized reference picture

(a) To-be-encoded frame

(b) Reference frame

(c) 3D setup

(d) Synthesized reference picture

(a) To-be-encoded frame

(b) Reference frame

(c) 3D setup

(a) To-be-encoded frame

(b) Reference frame

(c) 3D setup

(d) Synthesized reference picture

(a) To-be-encoded frame

18

(b) Reference frame

(c) 3D setup

(d) Synthesized reference picture

The proposed method

Main steps

- Motion detection (Flag-3D)
- Camera Localization and Compression (Overhead 1)
- 3D Mesh Reconstruction and Compression (Overhead 2)
- 3D-based Reference Picture Synthesis
- VVC Reference Picture Lists Modifications
- VVC Encoding

- Reference Pictures Lists (RPLs) Modifications
 - Replaced Reference Mode
 - Additional Reference Mode

20

VTM: POC10 [L0 8 0] [L1 12c 8]

- Reference Pictures Lists (RPLs) Modifications
 - Replaced Reference Mode
 - Additional Reference Mode

VTM:	POC10 [L0 8 0] [L1 12c 8]
RR-Mode:	POC10 [L0 8 0] [L1 12c 8]

- Reference Pictures Lists (RPLs) Modifications
 - Replaced Reference Mode
 - Additional Reference Mode

 VTM:
 POC10 [L0 8 0] [L1 12c 8]

 RR-Mode:
 POC10 [L0 8 0] [L1 12c 1]

- Reference Pictures Lists (RPLs) Modifications
 - Replaced Reference Mode
 - Additional Reference Mode

20

VTM: POC10 [L0 8 0] [L1 12c 8] RR-Mode: POC10 [L0 8 3D-Ref] [L1 12c 3D-Ref]

- Reference Pictures Lists (RPLs) Modifications
 - Replaced Reference Mode
 - Additional Reference Mode

20

VTM:	POC10 [L0 8 0] [L1 12c 8]
RR-Mode:	POC10 [L0 8 3D-Ref] [L1 12c 3D-Ref]
AR-Mode:	POC10 [L0 8 0] [L1 12c 8]

- Reference Pictures Lists (RPLs) Modifications
 - Replaced Reference Mode
 - Additional Reference Mode

20

VTM:	POC10 [L0 8 0] [L1 12c 8]
RR-Mode:	POC10 [L0 8 3D-Ref] [L1 12c 3D-Ref]
AR-Mode:	POC10 [L0 8 0] [L1 12c 8]

- Reference Pictures Lists (RPLs) Modifications
 - Replaced Reference Mode
 - Additional Reference Mode

20

VTM:	POC10 [L0 8 0] [L1 12c 8]
RR-Mode:	POC10 [L0 8 3D-Ref] [L1 12c 3D-Ref]
AR-Mode:	POC10 [L0 8 0 3D-Ref] [L1 12c 8 3D-Ref]

The proposed method

Main steps

- Motion detection (Flag-3D)
- Camera Localization and Compression (Overhead 1)
- 3D Mesh Reconstruction and Compression (Overhead 2)
- 3D-based Reference Picture Synthesis
- VVC Reference Picture Lists Modifications
- VVC Encoding

Outline

- Motivation
- The proposed method
- Simulation results & Analysis
- Conclusion

Important Mesh Processing Parameters

- Mesh Filtering
 - Bounding Box Size (BB)
- Mesh Decimation
 - Decimation Factor (DF)
- Mesh Compression

23

- Geometry Quantization Parameter (G-QP)

 $DF = \frac{Number \ of \ Remaining \ Vertices \ after \ Decimation}{Number \ of \ Original \ Vertices} \%$

(a) DayLightRoad

(b) Original Mesh size=697 kB

(c) Decimated and Compressed (d) Decimated and Compressed (e) Decimated and Compressed DF=0.5, size=26 kB

DF=0.1, size=6.9 kB

DF=0.05, size=3.7 kB

Camera Localization and 3D Mapping for Reference Picture Synthesis in VVC | Hossein Golestani | RWTH Aachen University | 27.07.2021 | Summer School on Video Coding and Processing – SVCP2021 | Berlin, Germany

The Impact of Geometry Quantization Parameter (G-QP)

(a) G-QP=14, Size=53kB

25

(b) G-QP=12, Size=39kB

(c) G-QP=10, Size=27kB

(d) G-QP=8, Size=17kB

DE 0 1

- R1: BD-Rate without the overhead
- R2: BD-Rate with the overhead
- Mesh Distortion: d-metric PCC tool [5]

	Seq.	Coometry	DF-0.1							
		Quantization	Mesh Dist.	Overhead	R1	R2				
	Augof	14-bit	0.0023	14.33	-2.85	-2.51				
	Avg. of	12-bit	0.0041	11.93	-2.79	-2.53				
	an seq.	10-bit	0.3407	9.55	-2.58	-2.35				

[5] G-PCC MPEG-I point cloud comparison tool, accessed 01.02.2021 [Online], available: http://mpegx.int-evry.fr/software/MPEG/PCC/mpegpcc-dmetric.

- Coding results
 - BD-Rate Y

26

- Anchor: VTM 10.0
- Random Access Profile

VTM: POC10 [L0 8 0] [L1 12c 8]

RR-Mode: POC10 [L0 8 **3D-Ref**] [L1 12c **3D-Ref**]

AR-Mode: POC10 [L0 8 0 3D-Ref] [L1 12c 8 3D-Ref]

Soa	Configuration	DF-0.5		DF-0.3		DF-0.1			DF-0.05				
sey.	Configuration	Overhead	<i>R1</i>	<i>R2</i>									
Devi ight Pood	Replaced Ref.	28.0	-2.03	-1.00	10.7	-2.01	-1.29	8.0	-1.64	-1.32	57	-1.46	-1.25
DayLightKoad	Additional Ref.	28.0	-2.94	-1.92	19.7	-2.93	-2.21	8.9	-2.61	-2.28	5.7	-2.46	-2.24
DoultDunning	Replaced Ref.	12.7	-1.94	-1.66	20.2	-1.93	-1.73	14.5	-1.94	-1.84	0.2	-1.92	-1.86
ParkRunning	Additional Ref.	42.7	-2.20	-1.93	3 30.2	-2.21	-2.01	14.3	-2.24	-2.14	9.2	-2.20	-2.14
MarkatDlaga	Replaced Ref.	24.0	-4.52	-3.57	24.0	-4.57	-3.89	11.0	-4.27	-3.94	7 0	-3.74	-3.52
MarketPlace	Additional Ref.	54.9	-5.61	.61 -4.66	24.9	-5.60	-4.92	11.0	-5.34	-5.01	/.8	-4.79	-4.57
NotElix DrivingPOV	Replaced Ref.	47.0	-2.91	-1.61	24.1	-3.03	-2.11	15.0	-3.01	-2.58	0.8	-2.82	-2.55
Netriix-DiivingrOv	Additional Ref.	47.9	-3.66	-2.37	34.1	-3.76	-2.84	13.9	-3.70	-3.27	9.0	-3.23	-2.96
MountainPay	Replaced Ref.	22.5	-3.37	-2.57	17.2	-3.37	-2.79	87	-3.42	-3.12	6.0	-3.40	-3.20
Woulltambay	Additional Ref.	23.3	-3.39	-2.59	17.2	-3.38	-2.80	0.7	-3.41	-3.11	0.0	-3.36	-3.15
NotElin Aprial	Replaced Ref.	24.6	-2.64	-2.01	247	-2.64	-2.19	11.9	-2.58	-2.37	77	-2.39	-2.25
Netriix-Aenai	Additional Ref.	54.0	-2.70	-2.07	2.07	-2.71	-2.26	11.0	-2.60	-2.38	/./	-2.39	-2.25

TABLE I. BD-RATE (IN%) AND OVERHEAD (IN KB) FOR DIFFERENT CONFIGURATIONS – ANCHOR: VTM10.0

Encoding/Decoding run-time

27

• The run-time of all blocks are considered (camera localization, mesh generation, mesh decimation, mesh compression, RP synthesis,)

	VTM 10.0	Mesh-based + RR	Mesh-based + AR
Encoding	100%	95%	103%
Decoding	100%	2668%	2674%

TABLE II. RUNNING-TIME COMPARISON – REFERENCE: VTM 10.0

- Encoding time is almost equal to or less than the anchor
- Some ideas on how to reduce the decoding time ...

Outline

- Motivation
- The proposed method
- Simulation results & Analysis
- Conclusion

Conclusion

- A better 3D understanding of the scene results in a better motion compensation
- 3D data can be extracted from 2D video sequences captured by moving cameras
- The proposed method achieves ~3% BD-Rate over VTM 10.0 (on average)
- The encoding/decoding run-time
 - The encoding run-time is comparable with the anchor
 - The decoding time is almost 27x
- Sensors like LiDAR, IMU, and ToF can accelerate and enhance the results.

Source: Apple

Source: Samsung

Source:Volkswagen

Any Questions?

• <u>H. B. Golestani</u> and <u>J.-R. Ohm</u>, "Exploiting the 3D Structures Observed in 2D Video Sequences for Motion Compensation," in *Picture Coding Symposium (PCS'21)*, (Bristol, UK), IEEE, June 2021.

- Any further questions? Please contact me.
- http://www.ient.rwth-aachen.de
- golestani@ient.rwth-aachen.de

